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By H. C. Williams 

Abstrct. Let I = 2 or 3 and let D be a positive 1-power-free integer. Also, let R be the 
product of all the rational primes which completely ramify in K = 92(D 1/l). The integer d is 
a principal factor of the discriminant of K if d = N(a), where a is an algebraic integer of K 
and d I R' -. In this paper algorithms for finding these principal factors are described. 
Special attention is given to the case of I = 3, where it is shown that Voronoi's continued 
fraction algorithm can be used to find principal factors. Some results of a computer search 

for principal factors for all 2(V7D ) with 2 < D < 15000 are also presented. 

1. Introduction. Let / = 2 or 3, D be a positive i-power-free integer and, 
K = (2(D1/I) be the algebraic number field formed by adjoining D"l' to the 
rationals B. In this paper our main concern will be with the case of / = 3, but we 
will also briefly discuss the case where / = 2. 

Denote by f2lD '/1] the ring of algebraic integers in K and let z be the set of 
rational integers. We say that any algebraic integer of K is primitive if it is not 
divisible by a rational integer greater than 1. We denote by N(a) the norm (product 
of a and its conjugates) of any a E K. Let c (> 1) be the fundamental unit of K, 
and let R be the product of totally ramified primes in K. 

When / = 2, we have 

R = D, D-1, 2 (mod 4), 
2D, D _3 (mod 4). 

We also have the following 

THEOREM [1]. If N(e) = 1, there exist two primitive ? at, ? a2 e V2 D] such 
that 

a 2 a 2 2 2 

(1.1) IN(a1)l I N(a2)1 

If we denote by a' the conjugate of a in K, then 

(1.2) =t (2D 1/2 when D _ 3 (mod 4) and 2 N(a1), 
D"l2 otherwise. 
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Thus, we see that N(al) and N(a2) are divisors of R. These integers are called 
principalfactors of the discriminant of '2(Vi ), or more simply, principal factors for 

2(V7 ). 
If N(e) = -1, then from (1.1) it is clear that no principal factors of K can exist. 

We can express some of these results in the following fashion. We have 

(1.3) e' I)72 y e K, 0< i < 1. 

If i = 0, we have principal factors in K; if i = 1, we do not have principal factors 
in K. 

Note that the problem of existence of principal factors in 2(V7 ) is as difficult 
as the famous problem of whether or not there are integer solutions of the Pellian 
equation 

(1.4) x2-Qv2=-1. 

Recently Morton [6] and Lagarias [7] have obtained some important results 
concerning this problem. 

A simple method of determining these principal factors can be developed by 
using continued fractions. We let 40 = ? E K and let 

(1.5) = <qo q1, q2 ... , q,,n-1, c> 
be the continued fraction expansion of 40. If A -2 = 0, A -1 = 1, B-2 = 1, B1 = 
0, and 

( Ak+l = qk+lAk + Ak-1 

Bk+' = qk+Bk + Bk-l (k = -1, O, 1, 2, 3, .. . 

the convergents Cm = <qO, ql, q2,... Cqm> of (1.5) are given by Am/BBm. Put 

(1.7) { V=b, D 1 (mod4), 
(1 +V 7)/2, D 1 (mod4). 

If we let 40 = u, the continued fraction expansion of 40 has periodp, and we have 

O>n =(pn +VD)I/Qn, Pnl Qn e EZ 
and ?p+I = 0,. We must have a least positive integerj such that either 

Qj - = Qj (N(e) = -1),p = 2j-1, 
or 

Pi -=Pj (N(e)= +1),p=2j-2. 
In the latter case, since 

N(Aj 'jUBj-) (-'Qj - /QO -2 P' j-2)= 

and 

(1.8) e = A I1 -'Bp-I = Qo(Aj_2 - 
iBj- 2 /j-l 

(see, for example, [9]), we see from (1.1) that Qj -/QO is a principal factor of 
B2(Vi ). 

Thus, the continued fraction algorithm provides us with the principal factors 
whenever they exist. It can also be used to find a1 and a2 (by (1.2)) in (1.1). 
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When /1= 3 we let 83 = D = ab2 and 83 = D = a2b, where a, b are coprime 
square-free integers. We have 

R f3ab, D ? ? 1 (mod 9) and 3 t D, 
ab, otherwise. 

Denote by a' and a" the conjugates of any a E K, and write 

(1.9) C = (g1 + g28 + g38 )/3 (g g2, g3 E C ) 

Note that since N(e) = 1, we have g3 27 (mod ab). 
If ke = /83 is solvable for /3 Ee K and k (:#- 0) e Z, then there exist six unique 

primitive integers ? a1, ? a2, ? a3, ?+8, ?82, ?+83 of K such that 

(1.10) ~ ~~~ e ai3/ N(ai), 

(.02 { Af3/IN(fA) (i = 1, 2, 3). 

Here N(a,), N(Af3i) are divisors of R2 and are called the principal factors of the 
discriminant of K = 2(\4_i ). These numbers have been discussed in some detail 
by Barrucand and Cohn [1], [2]. 

In fact, if a E 2[8], N(a) I R2, and N(a) = 3Tdd22df4d2, where a = d,d2d3, b = 
d4d5d6, then the six numbers a, 8a/d2d4d5, 8a/dld2d5, a2/d2d5, 8a2/d1d2d4d2, 
8a2/d d?d4d5 are all in 2[8], and each of their norms divides R2. Thus, each of the 
elements of the set 

(1.1) 3TdId2d4 d5, 3Td12d3d5d6, 3 d2d3d4d6, 3'd2d2d4d5, 3d2d3d4d62, 3d d3d52d6> 

where (T, V) = (0, 0), (1, 2) or (2, 1) is a principal factor whenever N(a) is. 
Let p be a primitive cube root of unity and put Q = 2(p), L = K(p). If H is the 

class number of L and h is the class number of K, then 

(1.12) H = rh2/3, 

where r = 1 or 3, see [2]. Using the results of [2] together with a later result of 
Halter-Koch [5], we get the following 

THEOREM. Consider the equation 

ct (1.13) e piy3 (y e L = K(p)), O < i < 2, 

(i) (1.13) has no solution if and only if r = 1, 
(ii) (1.13) has a solution with i = 0 if and only if principal factors exist for K, 
(iii) (1.13) has a solution with i 7# 0 if and only if there exists a unit E E L such 

that the relative norm, 

(1.14) NL/Q(E) = p. 

The equation (1.13) is completely analogous to (1.3). But note that we have three 
possible cases here not just two. When 1 = 2 there is no analogue to case (i). We 
also point out that Eq. (1.14) is the 1 = 3 version of (1.4). 

Brunotte, Klingen, and Steurich [3] have shown that r in (1.12) is 3 if and only if 
g1 in (1.9) satisfies 

(1.15) g, _ 3 (mod ab). 
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This allows us to find a method of distinguishing between (i) and the other two 
cases (ii) and (iii). However, we cannot distinguish between (ii) and (iii). In [2] it is 
shown that principal factors must exist if D has no prime factors of the form 1 + 3t 
and at least one prime factor of the form 2 + 9t or 5 + 9t. Further, if (iii) holds, 
then each prime factor of D must be 3 or of the form 9t + 1. These conditions are 
not enough, however, for if D = 19, then case (i) holds, and if D = 51, then case 
(ii) holds. We do note that if D is a prime of the form 9t - 1, then (iii) holds. This 
is because r = 3 by (1.15) and principal factors cannot exist because R = D. 

Since principal factors can play an important role in the determination of the 
fundamental unit of K (see Williams [11] and [12]) and since their existence tells us 
that the Diophantine equation 

N(a) = d 

is solvable for some d R 2, it is of some interest to develop a means of finding the 

principal factors for any Q(~QD ) when they exist or showing that they do not exist. 
In this paper we describe a technique for distinguishing between cases (ii) and (iii). 
The method is analogous to the continued fraction method described above for 
1 = 2, but there are some complications which must be taken into consideration. 
We also present some numerical results from a computer run of our algorithm on 
all values of D between 1 and 15,000. 

2. Relative Minima and the Algorithm of Voronoi When I = 2. In the next two 
sections we give a very brief description of Voronoi's [8] idea for extending the 

continued fraction algorithm over B2(Vi ) into 2(2{D' ). It should be emphasized 
that our treatment here is much less general than that of [8]. 

Let A, u E B2(Vui ) and put A = (A, A'), M = (,u, u'). Let 5 be the lattice 
defined by 

= {uA + vM u, v Ez 

We say that 5 is a lattice with basis [A, M]. If A = (a, a') E 5, we define the 
normed body of A to be 

6X(A) = ((x,y)lx,y E %R, lxi < jai, IYI < la'l , 
where 'R is the set of reals. If e E 5 and 6i(0) n = {(O, 0)), we say that e is a 
relative minimum of S. 

Since 5 is symmetric about they axis, we will lose no generality by working with 
only those points of 5 which have a nonnegative first component. If E = (0, 0'), 
( = (4, 4') are relative minima of S with 0 > 4 > 0, we say that they are adjacent 
if there does not exist P = (4A, 4) (: (0, 0)) E 5 such that 141 < 101 and 14'1 < 
?'j. Voronoi proved 

THEOREM 2.1. Let E = (0, 0'), (D = (4, q)') be elements of S such that 0 > 4 > 0. 
If [E, (D] is a basis of 5, then e and ( are adjacent relative minima if and only if 

O'I < I4'j and 0'p' < 0. 

COROLLARY. Let S have basis [(1, 1), (0, 0')]. If 0 < 0 < 1 and 0' < -1, then 5 
has (1, 1) and (0 + [-0'], 0' + [-0']) as adjacent relative minima.* 

* Here we use the notation [a] to denote that rational integer such that a - I < [a] < a. 
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If Ei = (Oi,) E O (i = 1,2,3,... .), whereO <Oi <Oi, and Oi and Ei+l are 
adjacent relative minima, we call 

(2.1) e1, e2, e3, ... , * w ... 

a chain of relative minima of S. Voronoi showed that if A = (a, a') is a relative 
minimum of S and a > 01, then A must be one of the Ei in the chain (2.1). 

Let S have [(1, 1), (0, 0')], where 0 <0 < 1 and 0' < -1, as a basis, and let 

(2.2) 0, = (1, 1), E)2 E)3, . . , , . ... 

be a chain of relative minima of S. Put E(') - (11), O( ')) = (2) We see by the 
corollary of Theorem 2.1 that e2 = (0 + [-0'], 0' + [-0']); hence S = S has 
[(1, 1), E(')] as a basis. Let 92 have [(1, 1), (1/0('), I/ g)')] as a basis, and let E)(2) 
be the relative minimum adjacent to (1, 1) in 52 such that (2) > 1. Then, by the 
corollary of Theorem 2.1, 

0(2) = 1 /0(1) + [- 1/0g ] 

and 03 = 0 (1)(2). In fact, if n has basis [(1, 1), (l/0(n -), l/(n- ))], we find that 
f(n) = 110 (n-) + [-l / 001)'] > I 

is the relative minimum adjacent to (1, 1) in S. Also, if On = (On, 0n'), then 
n-i 

(2.3) On = (i) 

i = 1 

Putting 40 = -0', qo = [40], qk+l = [1/=(k)'k)'f-I, we see that 

<qO ql, q2,. .. q q- 1, n> is the continued fraction expansion of 4>o. 
If u is defined as in (1.7), we note that since I and [u] - u' differ by an integer, 

their continued fraction expansions have the same values for 4'k in (1.5) for 
k = 1, 2, 3 .... Putting 0 = -[ [] above, it is a simple matter to show that 

09k) 
Qk Q (k = 1, 2, 3,...). 

VJDi-Pk Pk+l 

Further 
n 

Pi + VX On= n- ,+J = An- 2 A 2 
i- Qi A_- n2 

and if we define N(E)) the norm of E) = (0, 0') to be N(0) = 00', then 

N(E@) = (_I)n IQn_/Qo 

Thus, from the results in Section 1 we see that principal factors of ~2(Vi) exist if 
and only if for some n such that 2 < n < p, we have 6X(E)n) I R. 

3. Relative Minima and the Algorithm of Voronoi When 1 = 3. The reason we 
have given such a lengthy discussion of Voronoi's continued fraction algorithm for 
1 = 2 is that it is a simple matter to extend several of these ideas to the case of 
/ = 3. In this case, we let A, u, v E ( ) and put 

A = (A, (A' - A")/2i, (A' + A")/2), 

M = (tL, (zu - u")/2i, (u' + u")/2), 

N =(v, (v' - P")12i, (,v' + v")/2), 
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where i is a fixed zero of x2 + 1. All components of A, M, N are real. We let S be 
the lattice defined by 

S = {uA + vM + wN I u, v, w E 

and we say that S has basis [A, M, N] or [X, ,u, v]. If A E 5, then 

A = (a, (a' - a")/2i, (a' + a")/2). 
We often write this as A a or a A. If A E 5, we define the normed body of A 
to be 

%(A) = {(x,y, z) I x,y, z E i, IxI < I a,y2 + Z2 < Ia'l2}. 

It should be noted here that 

la'12 = la"12 = a'a" = N(a)/a = ((a' - a")/2i)2 + ((a' + a")/2)2. 
If E E S and %(EZ) n S = {(O, 0, 0)), we say that E is a relative minimum of 

S. If E 9 and D are relative minima of S with 9 > 4 > 0, we say that they 
are adjacent if there does not exist a I (# (0, 0, 0)) E S such that if I , + then 

lipl < 101 and lip'l < lo'l. If E)i E S (i =1, 2,3,. ... ), where E)i "I- Ai, ? < 0, < 0, + 
and Ei and Ei+ I are adjacent relative minima of 5, we call 

(3.1) e1, 92, e3, ... , * ... 

a chain of relative minima of S. We also have the result that if A a is a relative 
minimum of S and a > 91, then A must occur as an element in (3.1). 

If (1, 0, 1) is a relative minimum of S and 

(3.2) E= (1, 0, 1), E2, 03, . * . e,o 

is a chain of relative minima of 5, we can find the elements in (3.2) if we can 
develop a method of finding the relative minimum 9g O Og > 1 adjacent to 
(1, 0, 1) in any lattice of type S in which (1, 0, 1) is a relative minimum. We do this 
as we did in the case when I = 2. Simply let S = S and W) - 0(1) > 1 be the 
relative minimum adjacent to (1, 0, 1) in S1. Embed 1, g0) in a basis of S1 and let 
this basis be [1, (k), 0,(1)]. Let 82 have basis [1, I/9g(1), 9(,1)/ 0(1)]. We see that 
(1, 0, 1) is a relative minimum of 82, and we find the relative minimum 0(2) _ 9 (2) g g 
> 1 adjacent to (1, 0, 1) in 82. We continue this process by defining 5sn to be the 
lattice with basis [1, i/9(n-1) 9,n-1)/9(n-)] where E) 69(n-1) > 1 is the 
relative minimum adjacent to (1, 0, 1) in 5n -'. It follows that 

n-i 
n9 = lo(i) 9(k) - (m?k) + mIk)5 + 

i=1 

^(k) - (ngk) + Mik)8 + Msk)S M/k 

where m(k), m(k), m(k), n(k), n(k), nk), ak Ez ( k > ?, and 

g.c.d. (Uk, m|k), msk), mik), nik) nsk) nik)) - 1 

When there is no doubt as to the value of k in the superscripts here, we will omit 
them. 

In the remainder of this paper we assume that 51 is the lattice with basis [1, ut, v], 
where [1, ut, v] is a basis of the algebraic integers of 2(8). In this case (1, 0, 1) is a 
relative minimum of 51 and so is E z e. This algorithm is periodic with period p, 
i.e., 0. (k) -9g(k+p) (k = 1, 2, 3, . . . ), where p = e. Unfortunately, we do not 
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have a simple theorem like Theorem 2.1 to help us find the values of @(k). In [8] 
Voronoi gave a method of doing this without proof. He did give a proof of a 
method for finding the elements of a different chain from (3.2). This method is 
described in Delone and Faddeev [4]. In Williams, Cormack, and Seah [10] a proof 
is provided of a relatively rapid technique for finding these (k),S. 

In order to use the above ideas as part of a method for finding principal factors 
for B2Q), we would like to have a result similar to the one at the end of Section 2. 
If we define N(Q3)) = N(fJn) when 03, 9,, it is certainly true that if 2 < n < p 
(1 = 3) and N(E)n) I R2, then N(En) is a principal factor. But must this occur if 
B2(S) has principal factors? We shall see that it does not. In spite of this we will still 
be able to use Voronoi's algorithm to find principal factors. In order to do this, we 
will have to use several results from [12]. One of these is 

LEMMA 3.1. Let a E ,[8], and suppose N(a) I R2. Put N(a) = 3Td1d22d4d52, where 
a = d1d2d3, b = d4d5d6. If 

A3 = 3r min(dId22d4d52, d,2d3d5d62, d2d32d42d6), 
then y = Xa/N(a)1/3 E B[4]. Furthermore, N(y) R2, and if we put N(y) = 3Trs2, 
where r = r1r2, s = SS2, rs2 I a, r2s2 I b, then 

5/r2S, 5/rls > 1. 

By using (1.11) and this result, we know that if there is a principal factor for 
2(8), then there must be some y E B2(S) such that 

- 
Y E =-B[ 8], 

(3.3) N(y) = 3Trs2 N(y) I R2 (T = 0, 1), 

lal = 81r2S > l, 82 = Slrls > I. 

By Theorem 2 of [11] we know that if D 2 + 1 (mod 9) and N(y) = rs2, then 
IF -y is a relative minimum of S1, and we can find F by using Voronoi's 
algorithm. We will assume that the values of D with which we are dealing are such 
that either D 1 (mod 9) or N(a) = 3rs2. Under this assumption we have 

(3.4) T 0 when D -+ (mod 9), 

1 when D i? ?1 (mod 9). 

THEOREM 3.2 [12]. Suppose that there exists some a E B2[S] such that N(a) I R2 

Let y be defined as in (3.3) and (3.4). Then IF y is not a relative minimum of S1 if 
and only if there exists a nonzero K E ~2)[] such that K = rs2X, where X = X1 + 

X281 + X382 (X1, X2, X3 E Y) and 

(3.5) Xi-ar2sX2 SbrsX3 (mod 3), 

(3.6) ? X < 3, 

(3.7) F(X) = X12 + 812X22 + 822X2 -_- - 12X2X3 <9. 

COROLLARY. If F above is not a relative minimum of SI, then e 0 = 

3 -IKy/N(y) is a relative minimum of 51 when K = rs2X and X is the least value of 
X1 + X281 + X382 such that (3.5), (3.6), and (3.7) are satisfied. 



268 H. C. WILLIAMS 

In the next section we will show how Voronoi's algorithm can be used to find F 
when it is not a relative minimum of S1. 

4. The Algorithm. We must first find the K of the corollary of Theorem 3.2. To do 
this we use 

THEOREM 4.1. Suppose y is given by (3.3) and (3.4) and IF -y. Let I-ar2s, 

12 -br1s (mod 3), where 1qil = 1 (i = 1, 2), and put X1 = -71?l12 X2 = -'q2, X3 = 

-711, X = X1 + X2Y1 + X3Y2, K = rS2X. F is not a relative minimum of 51 if and only 
if 7 Ij + '12 2 and F(X) < 9. Further, if F is not a relative minimum of SI, then 
e( 9 = 3T- IKy/N(y) is. 

The proof follows easily from Lemma 4.2 of [12] and the corollary of Theorem 
3.2. It should be noted that the proof of Lemma 4.2 of [12] assumed that 8, < 82; 

but, as remarked in [12], if this is not the case, we need only interchange the values 
of a and b, r, and r2 and s, and S2. This has the effect of interchanging the values of 

61 and 62, l and 2 while keeping y the same. f] 
We now define an admissible d-set for 2 (8). Let d be any divisor of R2 such that 

d = 3TdId2d4d 5 (T = o,1), 

where a = d1d2d3, b = d4d5d6, and 

(4.1) d1d3d2 > df2d4d5, d32d4d6 > d1d2d52. 

Put X2--d1d2d4d6, X3 --d1d3d4d5, X1--X2X3 (mod 3), where lxii = 1 (i = 

1, 2, 3); also, let 

(4.2) Q = 3r - 3(3 - TdX1 + d d3d5d6X2 + d2d3d4d6X3 + 3ab). 

We say that {T, d1, d2, d3, d4, d5, d6) is an admissible d-set of 2(0) if X2 + X3 # -2 
and 

(4.3) d(2d - 3TabX1 + 3QX1) > 3Q2. 

THEOREM 4.2. Let y satisfy (3.3) and (3.4), and put d, = rl, d2 = s5, d4 r2= 

d5 = S2' d3 = a/d1d2, d6 = b/d3d4. If IF y is not a relative minimum of 51, then 
{T, dl, d2, d3 , d5, d6) must be an admissible d-set of 2(8). 

Proof. Since 81, 82 > 1 in (3.3), we must have (4.1). Also X1 = -711x12, X2 = -x12, 

X3 = -in in Theorem 4.1 and K = rs2X, where X = X1 + X281 + X382; hence, 

(4.4) K = d1d22d4d52X, + d1d2d5X28 + d2d4d5X3, 

and Q in (4.2) is given by 

'4.5) Q =33-3N(K)/N( )2 
Since F is not a relative minimum, we must have m1 + 'q2 # 2, and therefore 

k2 + X3 # -2. Further, X > 0 and F(X) < 9. Now F(X) = K'K"/r254; hence, F(X) 
(9 if and only if 

N(K)/K < 9rs or Q < 3-K or N(3IK - Q) > 0. 
wince 

N(3T-1K - Q) 

- Q(2* 32T-ldId d4d4- 32T-ld dd3d d3d6X1 + 3Td1d?d4d52XQ I Q2) 
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we see that (4.3) also holds. Hence {T, dl, d2, d3, d4, d5, d6) is an admissible 
d-set. E1 

If F -y is not a relative minimum here, we know that e 0 = 3-'K-y/N(y) is 
a relative minimum. Since N(O) = N(9) = 33T-3N(K))/N(y2), we see that N(9) = 
Q by (4.5). Thus, given any value of D, we need only find all the possible 
admissible d-sets and keep the corresponding Q values. As we proceed through 
Voronoi's algorithm in generating 02, e3, E4' ... etc., we check to see whether 
any N(Ej) either divides R2 or is equal to one of these Q values. In [10] it is shown 
that these values of N(Ej) = N(01) are easy to determine; in fact, N(01) = ai2/alleil, 
where e* = m -')nn')- n)m'). 

The one main difficulty in using this approach is the possibility of a large 
number of admissible d-sets for a particular 248]. However, we see in Table 1 
below that this does not seem to happen very often. In this table n is the number of 
admissible d-sets and f(n) is the number of cube-free values of D < 15000 such 

that 2(~'D ) has n admissible d-sets. There are 12478 cube-free values of D such 
that 2 < D < 15000. 

TABLE 1 

n f(n) n f(n) n f(n) 

0 10998 12 34 27 4 
1 280 13 3 30 1 
2 205 14 1 33 4 
3 386 15 26 36 2 
4 64 16 2 39 4 
5 29 17 5 42 4 
6 218 18 28 45 3 
7 16 19 1 48 4 
8 20 20 2 51 6 
9 78 21 18 54 5 

10 10 22 2 57 2 
11 5 24 7 60 1 

TOTALf(n): 12478 

If N(91) R 2, then N(0,) is a principal factor of 2(8); if this does not occur but 
N(0,) = Q for a d-set {r, dl, d2, d3, d4, d5, d6), we must then determine whether the 
corresponding y value is an algebraic integer of 2(8). This value of y is given by 

(4.6) y = 01N(y)/3r-_1, 

where N(y) = 3Td = 3Td,d?d4dd, and K is given by (4.4). Clearly, if y E 2[8], then 
N(y) is a principal factor for 2(8). 

We first note that K'K" = 3-Td(k1 + k28 + k38), where 

(4.7) k1 = 3-Td + abXl, k2 = d2d3d4 + djd2d5X3, k3 = dld5d6 + d2d4d5X2. 
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We now have 

THEOREM 4.3. If, for some admissible d-set, we get N(E,) = Q for some Oi in the 
chain (3.2), then y in (4.6) is an algebraic integer of 2(8) if and only if 

(4.8) { k2n3 - k3n2 -k2m3 - k3m2 -0 (mod 3ai), 

kle - (k2n3 - k3n2)m1 + (k2m3 - k3m2)n1 0 (mod 3ai2), 

where 09i) - (mI + m28 + m38)/a, Oh(i) = (n1 + n28 + n38)/a, ei = m2n3 - m3n2 

and k (j= 1, 2, 3) are given by (4.7). 

Proof. If A., vi E 2(8) and [1, P,, vi] is a basis of Si, then 

P il Oi ( 

where T is a matrix with integer entries and I T = +1. Thus, y E T48J if and only 
if y/O, = x + yp + zvi (x,y, z E 7), and therefore y E 2[8 ]if and only if there 
exist x, y, z E 5 such that 

(4.9) N(y) = x + y, + zvI. 

Now, from (4.5), 

N(y) 32--2Kf K" 

3T-r N(y)Q 

hence, (4.9) becomes 

(4.10) 3--2(k, + k28 + k3&) = Q(x +YiA + Zp,). 

Since [1, 9(i), #,(i) is a basis of Si, we can assume without loss of generality that 
-. =9A(i) , Pi = #(i). Also, since Q = N(Q3) = a2/all*el and a, = 31-' by (3.4), we 

get 

leAlk, = 3ai(aix + ym, + znl), Jlek2 = 3ai(ym2 + zn2), 

IeAjk3 = 3ai(ym3 + zn3), 

from (4.10). Solving these equations for x, y, z, we get 

3a,eiy = JeAj(k2n3 - k3n2), 3aiez = -jej(k2m3 - k3n2), 

3a,2x = leilk, - 3aym,- 3aiznl. 

Thus, x, y, z are integers if and only if the congruences (4.8) hold. El 
Our algorithm for determining whether or not ~2(S) has a principal factor is the 

following sequence of three steps 
(1) Determine whether or not any N(e,) for Oi in the chain (3.2) and 2 < i < p 

is such that N(,) I R 2. If so, we have a principal factor N(Q3) of 2(8), and we can 
terminate the algorithm. 

(2) If no such Oi is found by step (1), find all admissible d-sets for 2(8) and their 
corresponding Q values. Check if any of these Q values is N(Ei) for i < p. If none 
is, we know that we have no principal factors for 2(8), and we can terminate the 
algorithm. 
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(3) If N(e,) = Qj for one of the Q's in step (2), check whether the congruences 
(4.8) hold. If they do for some Q, then we have a principal factor 3dj; otherwise, 
there is no principal factor for 2(8). 

As an example, we mention that for D = 850, we get 

02 = 18 + 26 + 6, 03 = 161 + 176 + 6, E=04 = 341 + 366 + 198. 

Here, N(02) = 52, N(03) = 121. Thus, Voronoi's algorithm does not find a principal 
factor. However, we see that { 1, 2, 1, 17, 1, 5, 1) (d = 3 - 2 - 52) is an admissible 
d-set, and with K =-50 + 108 + 56 we get y = 180 + 198 + 108E 2[8] and 
N(y) = 150; thus, 150 is a principal factor. 

5. Determination of r. We have seen that the value of r in (1.12) can be 
determined when we know the value of g, modulo ab. In this section we describe 
how Voronoi's algorithm can be used to find g, (mod ab). 

We note that if n > 1 0 I = flnl n(i) 0= 9(n1)8"- 4,= p9,"-1)9 _, then 

[0,n- 1 0n, 4'n] is a basis of the integers in 2(8). Thus, we have 

(5.1) { 0k+1 
= 

X|I)Ok 
+ 

y?k)Ok -1 + 
Z?k),4k9 

Pk k+ 1 = Xsk )k + ySk)9k _ I + zlk)'k,4 

where X I(k),y,(k) 4k) E , (i = 1, 2). If we put 

0k = (G(k) + G k)6 + Gjk)& )/3, 4'k = (Hfk) + H4k)6 + H3(k)g )/3, 

we get 

(5.2) IGk+l) - x?k)Gfk) + y?k)Gfk-1) + zjk)Hfk) 

{ H(k+ ) - x4k)Gfk) + ySk)Gfk-1) + zSk)H(k) (i = 1, 2, 3). 
These are the formulas which are analogous to (1.6) for the usual continued 
fraction. Also, G(1) = 3, G2(1) = G(-) = 0, Gi(2) = 3m(1)/aj, Hi(2) = 3n-(1)a. 

If we put i = 1 in (5.2), we can use (5.2) as a pair of congruences modulo ab to 
find g, = G(P+') (mod ab). All that is needed is a method of calculating X(k), y(k) 

Z4k) i = 1, 2. 
If we divide each of the equations in (5.1) by Ok' we get 

{ @(k) = X?k) + y?k)/0(k-1) + z?k)jk-1)/0(k-1), (. 
0lk) = XSk) + ySk)/9(k-1) + zsk)0(k-1)/0(k-1). 

Let 

/g(k-1) = (m*(k) + m2*(k)a + M*(k)&)Iakg 

O(k-1)/(k-1) - (n*(k) + n*(2k)6 + n*(k)87 

From (5.3) we get six equations in the six unknowns X(k), y(k), z(k) (i - 1 2). Solving 
these, we get 

ek*y(k) = m(k)n3*(k) - m3k)n *(k), eky yk) = n(k)n-*(k) n(k)m *(k) 

e2*z(k) = m k)m *(k) - m k)m *(k), ek* zk) = n k)m*(k) -n )m *(k) 

Gk (k) = m(k) _ y(k)mj*(k) + z(k)n*k) ( GkX2 = n(k) -(yk)m*(k) - Z(k) *(k) 

where ek* = m*(k)n *(k) - n*(k)m *(k). 
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Since, in the process of carrying out the calculations involved in Voronoi's 
algorithm, we have to evaluate m*(k), j j*(k) n(k) n(k) (j = 1, 2, 3), it is not too much 
extra work to find X(k), y(k) Z(k) (i = 1, 2) and then use (5.2) to find g, (mod ab). By 
using this method to find g, (mod ab), we avoid multi-precise operations, since we 
only require any G(k), H(k) modulo ab. The actual values of G(k) and H(k) can get 
very large; for example, when D = 199109, G(P+) is a number of over 197000 
decimal digits. 

6. Computational Results. The algorithms of Sections 4 .and 5 were implemented 
on an Amdahl 470-V7 computer and run for all 2( C,i) with D < 15000. There 
are 12220 values of D = abl2 such that D is cube-free, (a, b) = 1, a < b and 
2 < D < 15000. Of the corresponding 12220 cubic fields investigated, it was found 
that 9053 have principal factors. Of the remaining 3177 fields, only 881 were such 
that the only prime factors of D were 3 or a prime of the form 91 ? 1. For these 
881 fields, it was found that (1.12) was satisfied in 556 cases. Thus, 2611 of our 
12220 fields are of type (i) in Section 1, 9053 are of type (ii) and 556 are of type 
(iii). For the quadratic case we have 7306 square-free D such that 2 < D < 15000 
and 2(V7D ) has a principal factor and 1813 D such that B2(V7 ) does not. 

By Theorem 5.3 of [12], we know that there can be at most two elements ei 
(- 9,) and Oj (; 9>) in the chain (3.2) such that 2 < i, j < p and N(Q3) I R2, 
N(Q3) I R2. That is, there can exist at most two principal factors for 2(8) that can 
be found as norms of relative minima of S,. When this occurs and 0i < Oj, we have 

= 0i3/ N(0,), 2 = 0_3/N(01). 

For example, when D = 42, we get 

02 = 24 + 76 + 26, 03 = 254 + 736 + 216, 04 = 278 + 806 + 236, 

05 = 737 + 2126 + 616, 06 = 1015 + 2928 + 846, 

07 = 10077 + 28996 + 8346, 08 = 21169 + 60906 + 17528. 

Here, N(02) = 6, N(03) = 50, N(04) = 20, N(05) = 29, N(06) = 7, N(07) = 15, N(08) 
- 1, and we see that i = 2,j = 6, e = 08 = 03/6, and e2 = 06/7. 

This simplifies the problem of computing e. Certain values of D for which this 
must occur are given in [12]. Of the 9053 fields above which have principal factors, 
8462 had two of their principal factors as norms of elements in their chain (3.2), 
572 had only one of their principal factors as a norm of an element in (3.2) and 
only 16 had none. We list these 16 fields according to their value of D in Table 2 
below. 

When D = 2, we have p = 1, and therefore we cannot find a principal factor as 
a norm of an element in (3.2) because the period length is minimal. This is not the 
case, however, with the rest of these numbers; in fact, for D = 6061, we have 
p = 972. 

On looking at Table 2, we notice that there is no D value in it such that 

D ?1 (mod 9). In fact, of the 575 fields 2(f ) which have only one Oi in (3.2) 
such that N(e,) I R2, only 12 have D ?_ I (mod 9). These are: 10, 325, 350, 1700, 
2366, 4114, 4420, 7514, 8470, 9044, 11132, 13294. In only one case in the remaining 
563 fields was the value of N(e,) which divides R2 divisible by 9. This occurs for 
D = 4165 with N(O3) = 153. 
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TABLE 2 

D Principal factor 

2 3 
455 = 5 7 -13 525 = 3 52 7 

833=72. 17 147=3.72 

850 = 2 52. 17 150 = 2 3 52 

1078=2.72. 11 294=2.3.72 

1235 = 5 13 - 19 1425 = 3 5 2_ 19 

1573 = 112. 13 363 = 3 .112 
3857 = 7 . 19 29 4263 = 3 72 29 

4901 = 132 29 507 = 3 132 
6061 = 11 19 - 29 10527 = 3 112 . 29 

6358 = 2 11 172 867 = 3 172 
8294 = 2 11 -13 29 11154 = 2 3 11 132 

8959 = 172- 31 867 = 3 172 
12121 = 17 23 31 19941 = 3 172 23 

12818 = 2- 13- 17 29 14703 = 3 1332- 29 

14801 = 192- 41 1083 = 3. 192 

In [I] Barrucand and Cohn conjecture that principal factors exist except in those 
cases where N(a) I R2 is congruentially excluded. From this conjecture we can 
infer (as is done in [1]) that if D- ? I (mod 9), D = r1r2 or r,r22, r, 1r2-=I 
(mod 3), and r, and r2 are primes, then a principal factor exists for 2( ) if 
(r1/r2)3 = (r2/r1)3 = 1. For example, if D = 223 - 72, we found that 49 is a 
principal factor. (For the significance of this result, see [1, p. 20].) However, this 
conjecture is false for D = 8299 = 43 - 193. Here (43/193)3 = (193/43)3 = 1, but 

we found that there is no principal factor for 2( 8299). The conjecture is also 
false for D = 11089 = 13 - 853 and D = 14203 = 7 - 2029. 

The conjecture is still of some interest where it applies to D = p, 3p or 9p, where 
p is a prime and p -4, 7 (mod 9). According to the conjecture we would expect 
that N(a) = 3 is always solvable for some a E B[8] whenever (3/p)3 = 1. That is, 
if (T, v) = (0, 0), (1, 2), (2, 1), there exist xl, x2, X3 E , such that 

x3 + 3pX3 + 3pp 2x3 - 3(r ++3)/3px1x2x3 = 3 

whenever (3/p)1 = 1. This part of the conjecture has not been violated by any of 
our calculations and may well be true. However, it appears to be rather difficult to 
prove. 

After examining the fundamental unit for a number of different fields 2(8), 
M. D. Hendy (personal communication) discovered that g, - 3 was often a highly 
composite number. Peter Montgomery gave a partial answer to the question of why 
this happened by noting that principal factors existed for the fields which Hendy 
examined. When e = a3/N(a) and a = (xl + x26 + x38)/3, then 

g1 = 3 + (abx1x2x3)/N(a). 
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Hence g, - 3 usually has a large number of factors. As we have seen above, 

2('2,f ) has a principal factor for most of the values of D < 15000. However, 
whether this trend continues or not is unknown. 
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